Activation of Vago by interferon regulatory factor (IRF) suggests an interferon system-like antiviral mechanism in shrimp

نویسندگان

  • Chaozheng Li
  • Haoyang Li
  • Yixiao Chen
  • Yonggui Chen
  • Sheng Wang
  • Shao-Ping Weng
  • Xiaopeng Xu
  • Jianguo He
چکیده

There is a debate on whether invertebrates possess an antiviral immunity similar to the interferon (IFN) system of vertebrates. The Vago gene from arthropods encodes a viral-activated secreted peptide that restricts virus infection through activating the JAK-STAT pathway and is considered to be a cytokine functionally similar to IFN. In this study, the first crustacean IFN regulatory factor (IRF)-like gene was identified in Pacific white shrimp, Litopenaeus vannamei. The L. vannamei IRF showed similar protein nature to mammalian IRFs and could be activated during virus infection. As a transcriptional regulatory factor, L. vannamei IRF could activate the IFN-stimulated response element (ISRE)-containing promoter to regulate the expression of mammalian type I IFNs and initiate an antiviral state in mammalian cells. More importantly, IRF could bind the 5'-untranslated region of L. vannamei Vago4 gene and activate its transcription, suggesting that shrimp Vago may be induced in a similar manner to that of IFNs and supporting the opinion that Vago might function as an IFN-like molecule in invertebrates. These suggested that shrimp might possess an IRF-Vago-JAK/STAT regulatory axis, which is similar to the IRF-IFN-JAK/STAT axis of vertebrates, indicating that invertebrates might possess an IFN system-like antiviral mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of Caspase-mediated Decay of Interferon Regulatory Factor-3, Exploited by a Kaposi Sarcoma-associated Herpesvirus Immunoregulatory Protein*

Upon virus infection, the cell mounts an innate type I interferon (IFN) response to limit the spread. This response is orchestrated by the constitutively expressed IFN regulatory factor (IRF)-3 protein, which becomes post-translationally activated. Although the activation events are understood in detail, the negative regulation of this innate response is less well understood. Many viruses, incl...

متن کامل

IRF-5 - A New Link to Autoimmune Diseases

Transcription factors of the interferon regulatory factor (IRF) family have a critical role in the activation of interferon (IFN) genes. All cellular IRFs share a region of homology in the amino terminus encompassing a highly conserved DNA binding motif characterized by five tryptophan repeats, but show variability in the carboxy (C-) terminal part of the IRF polypeptides. While some of these I...

متن کامل

Primary activation of interferon A and interferon B gene transcription by interferon regulatory factor 3.

The family of interferon (IFN) regulatory factors (IRFs) encodes DNA-binding transcription factors, some of which function as modulators of virus-induced signaling. The IRF-3 gene is constitutively expressed in many tissues and cell types, and neither virus infection nor IFN treatment enhances its transcription. In infected cells, however, IRF-3 protein is phosphorylated at the carboxyl terminu...

متن کامل

A Kaposi's sarcoma-associated herpesviral protein inhibits virus-mediated induction of type I interferon by blocking IRF-7 phosphorylation and nuclear accumulation.

Interferons constitute the earliest immune response against viral infection. They elicit antiviral effects as well as multiple biological responses involved in cell growth regulation and immune activation. Because the interferon-induced cellular antiviral response is the primary defense mechanism against viral infection, many viruses have evolved strategies to antagonize the inhibitory effects ...

متن کامل

The host response to West Nile Virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway.

Recent outbreaks of West Nile Virus (WNV) have been associated with an increase in morbidity and mortality in humans, birds, and many other species. We have initiated studies to define the molecular mechanisms by which a recent pathogenic isolate of WNV evades the host cell innate antiviral response. Biochemical and microarray analyses demonstrated that WNV induced the expression of beta interf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015